Какие типы галлюцинаций бывают в LLM и как их можно минимизировать
Существует два основных типа галлюцинаций в больших языковых моделях (LLM):
1. Intrinsic Hallucinations: Модель генерирует текст, который противоречит предоставленному вводу. Это может происходить, когда модель «выдумывает» факты или не следуют контексту.
2. Extrinsic Hallucinations: Модель генерирует текст, который фактически неверен или не подтверждается входными данными. Например, создание неверных статистических данных или ссылок на несуществующие источники.
Как уменьшить галлюцинации?
1. Оптимизация стратегии декодирования: Использование таких методов, как beam search или top-k sampling, может помочь улучшить качество вывода, избегая нелогичных или противоречивых утверждений.
2. Генерация с дополнительным поисковым механизмом (retrieval-augmented generation): Этот подход использует внешние базы данных или поисковые системы для получения точной и релевантной информации перед тем, как сгенерировать окончательный ответ, что помогает избежать фактических ошибок.
Какие типы галлюцинаций бывают в LLM и как их можно минимизировать
Существует два основных типа галлюцинаций в больших языковых моделях (LLM):
1. Intrinsic Hallucinations: Модель генерирует текст, который противоречит предоставленному вводу. Это может происходить, когда модель «выдумывает» факты или не следуют контексту.
2. Extrinsic Hallucinations: Модель генерирует текст, который фактически неверен или не подтверждается входными данными. Например, создание неверных статистических данных или ссылок на несуществующие источники.
Как уменьшить галлюцинации?
1. Оптимизация стратегии декодирования: Использование таких методов, как beam search или top-k sampling, может помочь улучшить качество вывода, избегая нелогичных или противоречивых утверждений.
2. Генерация с дополнительным поисковым механизмом (retrieval-augmented generation): Этот подход использует внешние базы данных или поисковые системы для получения точной и релевантной информации перед тем, как сгенерировать окончательный ответ, что помогает избежать фактических ошибок.
“To the extent it is used I fear it’s often for illicit finance. It’s an extremely inefficient way of conducting transactions, and the amount of energy that’s consumed in processing those transactions is staggering,” the former Fed chairwoman said. Yellen’s comments have been cited as a reason for bitcoin’s recent losses. However, Yellen’s assessment of bitcoin as a inefficient medium of exchange is an important point and one that has already been raised in the past by bitcoin bulls. Using a volatile asset in exchange for goods and services makes little sense if the asset can tumble 10% in a day, or surge 80% over the course of a two months as bitcoin has done in 2021, critics argue. To put a finer point on it, over the past 12 months bitcoin has registered 8 corrections, defined as a decline from a recent peak of at least 10% but not more than 20%, and two bear markets, which are defined as falls of 20% or more, according to Dow Jones Market Data.
A Telegram spokesman declined to comment on the bond issue or the amount of the debt the company has due. The spokesman said Telegram’s equipment and bandwidth costs are growing because it has consistently posted more than 40% year-to-year growth in users.
Библиотека собеса по Data Science | вопросы с собеседований from no